PUREALIDINS B AND C, NEW BROMOTYROSINE ALKALOIDS FROM THE OKINAWAN MARINE SPONGE *PSAMMAPLYSILLA PUREA*

Jun'ichi Kobayashi*, Masashi Tsuda, Kaori Agemi, Hideyuki Shigemori, Masami Ishibashi, Takuma Sasaki^a, and Yuzuru Mikami^b

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan, ^aCancer Research Institute, Kanazawa University, Kanazawa 920, Japan, and ^bResearch Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, Chiba 280, Japan

(Received in Japan 25 March 1991)

Abstract: New bromotyrosine-derived alkaloids, purealidins B (1) and C (2), have been isolated from the Okinawan marine sponge *Psammaplysilla purea* and their structures elucidated on the basis of spectroscopic data. Purealidin B (1) showed antibacterial activity, while purealidin C (2) exhibited antifungal and antineoplastic activities.

Recently several bromotyrosine-derived alkaloids have been isolated from marine sponges, especially from the family Verongidae,¹ and we have also isolated purealin², lipopurealins A ~ C³, and purealidin A⁴ from the Okinawan marine sponge *Psammaplysilla purea*. Purealin and lipopurealins were shown to exhibit unique bioactivities such as activation of myosin K,EDTA-ATPase or inhibition of Na,K-ATPase. These alkaloids, especially purealin, proved to be useful tools for studying regulatory mechanisms of these enzymes.⁵ During our survey of bioactive substances from Okinawan marine organisms,⁶ we further examined extracts of the sponge *P. purea* to obtain other bromotyrosine-derived compounds exhibiting interesting bioactivities. In this paper we describe the isolation and structural elucidation of new bromotyrosine-derived alkaloids, named purealidins B (1) and C (2), possessing antimicrobial and/or antineoplastic activity.

The sponge *P. purea* was collected off Kerama Islands, Okinawa, by SCUBA and kept frozen until used. The methanol extract was partitioned between ethyl acetate and water and the aqueous layer was subsequently extracted with *n*-butanol. The ethyl acetate soluble fraction was subjected to silica gel column chromatography with CHCl₃/*n*-BuOH/AcOH/H₂O (1.5:6:1:1) to afford purealidin B (1, 0.02%, wet weight) together with known aplysamine-2⁷ (0.013%). The *n*-butanol soluble fraction was also separated by a silica gel column with CHCl₃/*n*-BuOH/AcOH/H₂O (1.5:6:1:1) followed by C₁₈ medium pressure liquid chromatography with CH₃CN/H₂O/CF₃CO₂H (25:75:0.2 to 35:65:0.2) and C₁₈ HPLC (CH₃CN/H₂O/CF₃CO₂H, 35:65:0.2) to give purealidin C (2, 0.005%) along with known purealidin A (0.024%).⁴

Purealidin B (1) showed M⁺ ions in the ratio of about 1:4:6:4:1 at m/z 756, 758, 760, 762, and 764 in the FABMS spectrum, indicating the presence of four bromine atoms. The molecular formula of 1, C₂₄H₃₀N₃O₅Br₄ (as a cation), was established by HRFABMS (m/z759.8868, M⁺, Δ +1.5 mmu). The presence of amide carbonyl was indicated by IR absorption at 1690 cm⁻¹. The UV spectrum of 1 was closely similar to that of purealin² that possesses a spiroisoxazole ring. The ¹H NMR spectrum of 1 in DMSO-d₆ showed D₂Oexchangeable protons at δ 8.57 (1H, t) and 6.36 (1H, br s), which were attributable to amide and hydroxy protons. Signals for primary amino protons, usually found in the purealin-related compounds, were not observed, which was consistent with the fact that 1

was ninhydrin-negative. The ¹H-¹H COSY spectrum of 1 revealed the proton connectivities from the amide proton (δ 8.57, 1H, t, deuterium-exchangeable) to three methylene unit [H₂-10 (δ 3.38, 2H, m), H₂-11 (δ 1.99, 2H, m), and H₂-12 (δ 3.95, 2H, t)]. In the COSY spectrum the methylene protons bearing nitrogen (§ 3.50, 2H, m; H₂-18) were coupled to benzyl methylene protons (8 3.05, 2H, m; H₂-17). The COSY spectrum also revealed the presence of isolated methylene protons (§ 3.62 and 3.20, each 1H d; H₂-7). The ¹³C NMR data including DEPT experiment (Table 1) of 1 showed two methyl signals, six sp³ methylene signals, one of which bore oxygen atom, one sp^3 methine, one sp^3 quaternary carbon, two sp² methine signals, six sp² quaternary carbon signals other than an amide carbonyl. Considering the intensities of the ¹³C signals, the two sp² carbons at δ 117.5 (s) and 133.4 (d) were ascribed to two carbons on a symmetrical benzene ring, respectively. The protonated carbons were all assigned by heteronuclear multiple quantum coherence $(HMQC)^8$ experiment. The intense ¹³C signal at δ 52.3 was assigned to trimethyl ammonium group. The 13 C chemical shifts of trimethyl ammonium group (δ 52.3) and the methylene (δ 64.2; C-18) bearing ammonium nitrogen of 1 were similar to those of choline $(\delta 54.8 \text{ and } 68.3)$.⁹ Nine protons were estimated by the integration value for the *N*-methyl signal at δ 3.09 (s) in the ¹H NMR of 1, thus elucidating the presence of an NMe₃⁺ group connected on C-18. Further evidence for the structure of purealidin B (1) was provided by

	Purealidin B (1)						Pureal				
Position	¹³ C		ιH		J (Hz)	Position	¹³ C		ίΗ		J (Hz)
1	73.5	d	3.91	s		1	36.5	t	3.04	m	
2	120.8	S				2	27.7	t	2.07	m	
3	147.1	S				3	70.4	t	3.97	t	6.0
4	113.0	s				4	150.5	s			
5	131.2	d	6.58	S		5, 5'	117.2	S			
6	90.2	s				6, 6'	132.9	d	7.48	s	
7	39.1	t	3.20	d	18.1	7	136.4	S		-	
			3.62	d	18.1	8	27.7	t	3.74	S	
8	154.4	s				9	150.8	S			
9	158.9	s				10	163.0	S			
10	36.1	t	3.38	m		11	49.7	t	3.34	m	
11	29.3	t	1.99	m		12	33.3	t	2.27	t	6.6
12	71.3	t	3.95	t	6.3	13	139.1	S			
13	151.3	s				14,14'	132.9	d	7.45	s	
14,14'	117.5	s				15,15'	117.1	S		-	
15,15'	132.9	d	7.68	s		16	150.4	S			
16	135.8	s				17	70.3	t	3.97	t	6.0
17	26.9	t	3.05	m		18	27.7	t	2.07	m	
18	64.2	t	3.50	m		19	36.5	t	3.04	m	
1-OH			6.36	m		9-NOH			12.05	S	
3-OMe	59.5	q	3.64	s		10-NH			8.12	t	5.8
9-NH		•	8.57	t	5.8	1.19-NH2			7.86	br s	
18-NMe ₃	52.3	q	3.09	S		, · -L					

Table 1.	¹ H and	13C NMR	Data	of Purealidins	B	(1) and C	C	2)a
----------	--------------------	---------	------	----------------	---	----	---------	---	-------------

a)Spectra recorded on a JEOL JMN GX-270 spectrometer in DMSO-d6 as TFA salts.

comparison of spectral data with those of purealin, previously isolated from the same sponge.² The ¹³C chemical shifts of C-1 ~ C-16 moiety of 1 including the spiroisoxazole ring corresponded well to those of purealin. The absolute configuration of 1 was deduced to be the same as that of purealin on the basis of CD data ($[\theta]_{252}$ -8100 and $[\theta]_{290}$ -8000). Thus the structure of purealidin B was established to be 1.

Purealidin C (2), which was optically inactive, showed quasi-molecular ion peaks at m/z 741, 743, 745, 747, and 749 (1:4:6:4:1), indicating the presence of four bromine atoms. The HRFABMS data revealed the molecular formula to be $C_{23}H_{28}N_4O_4Br_4$ [m/z 744.8868, (M+H)⁺, Δ -1.3 mmu]. The IR absorptions at 3400 and 1690 cm⁻¹ implied the presence of NH/OH and amide carbonyl group, respectively. The ¹H NMR spectrum showed three deuterium-exchangeable signals at δ 12.1 (1H, s), 8.12 (1H, t), and 7.86 (4H, br.s), which were assignable to an oxime, an amide, and two primary amine protons, respectively. The ${}^{13}C$ NMR spectrum of 2 showed signals due to six sp³ methylene, one sp^2 methine, and seven sp^2 quaternary carbons other than an amide carbonyl. The presence of partial structure A was suggested by comparison of the ^{13}C chemical shifts of 2 with those of purealidin A⁴ as well as the $^{1}H^{-1}H$ COSY cross-peaks (NH₂/H₂-1, H₂-1/H₂-2, and H_2-2/H_2-3).¹⁰ Two sets of carbon signals due to segment A were observed in the ¹³C NMR spectrum of 2, indicating that 2 contains two sets of segment A. The structure of the rest of the molecule (C-8 ~ C-12) other than two of segment A was revealed by the $^{1}H^{-13}C$ long-range correlations obtained in the ¹H-detected heteronuclear multiple-bond correlation (HMBC) experiment.¹¹ The methylene protons at δ 3.74 (H₂-8) showed the cross-peaks to C-6, C-6', C-7, C-9, and C-10. The ¹³C chemical shifts of C-8, C-9, and C-10 were corresponding well to the -CH₂-C(=N-OH)-C(=O)- part of purealin² or purealidin A.⁴ The methylene protons at δ 3.34 (H₂-11), which were coupled to an amide proton (δ 8.12) and methylene protons (δ 2.73; H₂-12) in the ¹H-¹H COSY spectrum, were correlated to C-10 (\$ 163.0) and C-13 (\$ 139.1) in the HMBC spectrum. Thus the structure of purealidin C was concluded to be 2.

Purealidin C (2) showed cytotoxicity against human epidermoid carcinoma KB cells and murine lymphoma L1210 cells with IC₅₀ values of 3.2 and 2.4 μ g/mL, respectively, while purealidin B (1) exhibited almost no cytotoxicity. Purealidin C (2) also showed modest antifungal (*Candida albicans, Cryptococcus neoformans,* and *Paecilomyces variotii*) and antibacterial (*Staphylococcus aureus, Sarcina lutea,* and *Bacillus subtilis*) activities, while purealidin B (1) was active only against *S. aureus* and *S. lutea* among them.¹²

EXPERIMENTAL

General methods. Optical rotations were measured on a JASCO DIP-370 digital polarimeter. UV, IR and CD spectra were taken on a Shimadzu UV-220 spectrometer, a JASCO A-120 spectrometer, and a JASCO J-500A spectropolarimeter, respectively. ¹H and ¹³C NMR spectra were recorded on a JEOL JMN GX-270 and an EX-400 spectrometers in DMSO-d₆. The resonances of residual DMSO at $\delta_{\rm H}$ 2.49 and $\delta_{\rm C}$ 40.0 were used as internal

references for ¹H and ¹³C NMR spectra, respectively. FAB mass spectra were obtained on a JOEL HX-110 spectrometer by using glycerol as a matrix.

Isolation. The brown-colored sponge Psammaplysilla purea was collected off Kerama Islands, Okinawa, and kept frozen until used. The sponge (1 kg, wet weight) was extracted with methanol (1.3 L x 2). After evaporation under reduced pressure, the residue (44.1 g) was partitioned between ethyl acetate (400 mL x 3) and 1M NaCl aqueous solution and the aqueous layer was subsequently extracted with n-butanol (400 mL x 3). The ethyl acetate and *n*-butanol soluble fractions were evaporated under reduced pressure to give crude residues (2.68 and 5.78 g, respectively). A portion (0.91 g) of the ethyl acetate soluble fraction was subjected to a silica gel column (Wako gel C-300, Wako Pure Chemical, 28 x 425 mm) with chloroform/n-butanol/acetic acid/water (1.5:6:1:1) to give aplysamine-27 (0.013% yield, wet weight, $320 \sim 400$ mL) and purealidin B (1, 0.02%, 520-800 mL). A part (1.01 g) of *n*-butanol soluble portion was chromatographed on a silica gel column (Wako gel C-300, 28 x 420 mm) with chloroform/n-butanol/acetic acid/water (1.5:6:1:1). A fraction (360 mL ~ 460 mL) was rechromatographed on a reversed-phase column (Develosil Lop ODS 24S, Nomura Chemical, 30 x 300 mm) with acetonitrile/water (25:75 to 35:65) containing 0.2% trifluoroacetic acid, followed by HPLC separation (Develosil ODS-5, Nomura Chemical, 10 x 250 mm; flow rate, 2.5 mL/min; UV detection at 254 nm) with acetonitrile/water/trifluoroacetic acid (35:65:0.2) to afford purealidin C (2, 0.0001%, Rt 10.4 min).

Purealidin B (1). a colorless amorphous solid; $[\alpha]_D{}^{18}$ -4.5° (c 1.3, MeOH); UV (MeOH) λ_{max} 220 (ϵ 10000) and 284 nm (1000); IR (KBr) ν_{max} 3450, 2980, 2880, 1690, 1470, 1400, 1220, and 1150 cm⁻¹; CD (MeOH) $[\theta]_{252}$ -8100 and $[\theta]_{290}$ -8000; ¹H and ¹³C NMR (Table 1); FABMS *m*/*z* 764, 762, 760, 758, 756 (M⁺), 748, 746, 744, 742, 740, 684, 682, 680, 678, 602, 600, and 658; HRFABMS *m*/*z* 759.8892 (M⁺, calcd for C₂₄H₃₀O₅N₃⁷⁹Br₂⁸¹Br₂, 759.8877).

Purealidin C (2). a colorless amorphous solid; UV (MeOH) λ_{max} 210 (ε 23000) and 285 nm (1600); IR (KBr) ν_{max} 3400, 3100, 1680, 1400, 1200, and 1130 cm⁻¹; ¹H and ¹³C NMR (Table 1); FABMS *m*/*z* 771, 769, 767, 765, 763 (M+Na)⁺, 749, 747, 745, 743, 741 (M+H)⁺, 669, 667, 665, and 663; HRFABMS *m*/*z* 744.8868 (M+H, calcd for C₂₃H₂₉O₄N₄⁷⁹Br₂⁸¹Br₂, 744.8881).

Acknowledgement: This study was partly supported by Cooperative Research Program (90-01) of Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, Japan.

REFERENCES AND NOTES

(a) Arabshahi, L.; Schmitz, F. J, J. Org. Chem. 1987, 52, 3584. (b) Rodoriguez, A. D.; Akee, R. K.; Scheuer, P. J., Tetrahedron Lett. 1987, 28, 4989. (c) Gunasekera, M.; Gunasekera, S. P., J. Nat. Prod. 1989, 52, 753. (d) Morris, S. A.; Anderson, R. J., Can. J. Chem. 1989, 67, 667. (e) Kernan, M. R.; Cambie, R. C.; Bergquist, P. R., J.

Nat. Prod. 1990, 53, 615. (f) Kernan, M. R.; Cambie, R. C.; Bergquist, P. R. J. Nat. Prod. 1990, 53, 720.

- 2. Nakamura, H.; Wu, H.; Kobayashi, J.; Nakamura, Y.; Ohizumi, Y.; Hirata, Y. Tetrahedron Lett. 1985, 26, 4517.
- 3. Wu, H; Nakamura, H.; Kobayashi, J.; Ohizumi, Y.; Hirata, Y. Experientia 1986, 42, 855.
- 4. Ishibashi, M.; Tsuda, M.; Ohizumi, Y.; Sasaki, T.; Kobayashi, J. Experientia 1991, 47, 299.
- (a) Takito, J.; Nakamura, H.; Kobayashi, J.; Ohizumi, Y.; Ebisawa, K.; Nonomura, Y. J. Biol. Chem. 1986, 261, 13861. (b) Nakamura, Y.; Kobayashi, M.; Nakamura, H.; Wu, H.; Kobayashi, J.; Ohizumi, Y. Eur. J. Biochem. 1987, 167, 1. (c) Takito, J.; Ohizumi, Y.; Nakamura, H.; Kobayashi, J.; Ebisawa, K.; Nonomura, Y., Eur. J. Pharmacol. 1987, 142, 189. (d) Takito, J.; Nakamura, H.; Kobayashi, J.; Ohizumi, Y. Biochem. Biophys. Acta. 1987, 912, 404.
- (a) Kobayashi, J.; Tsuda, M.; Murayama, T.; Nakamura, H.; Ohizumi, Y.; Ishibashi, M.; Iwamura, M.; Ohta, T.; Nozoe, S. Tetrahedron 1990, 46, 5579. (b) Kobayashi, J.; Cheng, J.-F.; Kikuchi, Y.; Ishibashi, M.; Yamamura, S.; Ohizumi, Y.; Ohta, T.; Nozoe, S. Tetrahedron Lett. 1990, 31, 4617. (c) Kobayashi, J.; Murayama, T.; Ishibashi, M.; Kosuge, S.; Takamatsu, M.; Ohizumi, Y.; Kobayashi, H.; Ohta, T.; Nozoe, S.; Sasaki, T. Tetrahedron 1990, 46, 7699. (d) Kobayashi, J.; Murayama, T.; Kosuge, S.; Kanda, F.; Ishibashi, M.; Kobayashi, H.; Ohizumi, Y.; Ohta, T.; Nozoe, S.; Sasaki, T. J. Chem. Soc., Perkin Trans. 1 1990, 3301. (e) Kikuchi, Y.; Ishibashi, M.; Sasaki, T.; Kobayashi, J. Tetrahedron Lett. 1991, 32, 797. (f) Kobayashi, J.; Cheng, J.-F.; Yamamura, S.; Ishibashi, M. Tetrahedron Lett. 1991, 32, 1227. (g) Kobayashi, J.; Kanda, F.; Ishibashi, M.; Shigemori, H. J. Org. Chem. in press.
- 7. Xynas, R.; Capon, R. J. Aust. J. Chem. 1990, 42, 1427.
- 8. Bax, A.; Subramanian, S. J. Mag. Reson. 1986, 67, 565.
- Kalinowski, H.-O.; Berger, S.; Braun, S. In Carbon-13 NMR Spectroscopy; John Wiley & Sons: Chichester, 1988; p. 226.
- 10. In the ¹H NMR spectrum of 2, the signals for H₂-1, H₂-2, and H₂-3 were overlapped with H₂-19, H₂-18, and H₂-17, respectively.
- 11. Bax, A.; Summers, M. F. J. Am. Chem. Soc. 1986, 108, 2093.
- Minimum inhibitory concentrations (MIC, μg/mL) of 1 and 2 were followed: C. albicans, 31.3 for 1; C. neoformans, 15.6 for 1; P. variotii, 31.3 for 1; S. aureus, 62.5 for 1 and 2; S. lutea, 3.9 and 15.6 for 1 and 2, respectively; B. subtilis, 15.6 for 1.